Master’s theses

Please be aware that you need to login at github before having  access to the thesis github repository

Research master Humanities: track  Human Language Technology
(30ec – 5 months)

  • Vivian Claes (2022)  ECBERT: Applying BERT to European Central Bank Communication to Predict Market Response (full thesis ♦  internship at DNB)
  • Sophie Neutel (2021) Towards automatic ontology alignment using BERT (fulll thesis ♦  internship at TNO)
  • Søren K. Fomsgaard (2021) In the eye of the storm with style – Investigating style features in the language of QAnon on Twitter (fulll thesis ♦  internship at TextGain)
  • Nathan van der Molen – Pater (2021)  Information Usage in Coreference Resolution (full thesis)
  • András Aponyi (2020) Estimating Translation Quality Using Distributed Representations of Words and Sentences (full thesis ♦  thesis github ♦ internship at https://www.taus.net/)
  • Klaudia Bartosiak (2020)Towards Formalizing Eligibility Criteria of Clinical Trials: Biomedical Entity Linking (full thesis not availablethesis github ♦ internship at https://mytomorrows.com/)
  • Suzana Bašic (2020) Color as a Discriminative Property for Establishing Object Identity in Human-Robot Communication (full thesis not availablethesis github  ♦ research project: CLTL-make robots talk and think )
  • Lauren Green  (2020)  Semi-supervised Classification of Occupations using Pseudo-Labelling and Information Extraction (full thesis not available ♦ internship at: https://greple.de/)
  • Ngan Nguyen (2020)  Clickbait anatomy: Identifying clickbait with machine learning  (full thesis )
  • Lisa Vasileva (2020) Machine Translation Detection for Neural Machine Translation Scenario (full thesis ♦  internship at https://www.taus.net/)
  • Jonathan Schaller (2020) Cross-domain evaluation of a question-answering classifier (full thesis not available )
  • Karen Goes (2019) Exploring text mining techniques to structure a digitised catalogue (full thesis ♦ internship at: https://www.kb.nl/
  • Liza King (2018) Modals and Measles: Computational linguistic investigations into modal use in the vaccination debate (full thesis)
  • Benedetta Torsi (2018) Detecting claims in a cross-register corpus (full thesis)
  • Pia Sommerauer (2017) From old to new racism? Investigating known dangers in distributional semantic approaches to conceptual change (full thesis)
  • Chantal van Son (2015) Towards a Dutch frame-semantic parser (full thesis ♦ research project: CLTL-newsreader)
  • Femke Klaver (2014) Authorship attribution of forum posts  (full thesis ♦ internship at: TNO

Master linguistics : track  Text Mining
(18ec – 3 months)

 

  • Shuyi Shen (2022) Data to text generation with a joint entity and relation based method for a job advertisement (full thesis ♦ internship at TextMetrics)
  • Tessel Wisman (2022) Domain adaptation of end-to-end ASR via n-gram language modelling. (full thesis  ♦  internship at Amberscript)
  • Sylvia Pronk (2022) A detailed comparison between two coreference systems and their effect on key-sentence extraction (full thesis ♦  internship at DNB)
  • Mira Reisiger (2022) Context-based entity linking of biomedical text (full thesis  internship at Elsevier)
  • Yan Chung Li (2022) A Challenge Set for Natural Language Inference on but-inferred propositions (full thesis)
  • Konstantina Andronikou (2022)  Automatic Retrieval of Topics Using Topic Modeling Techniques from Customer Conversations in the Airline Domain  (full thesis ♦ internship at  Underlined)
  • Elena Weber (2022)  Automatic Topic Classification of Customer Feedback in the Banking Domain (full thesis ♦ internship at  Underlined)
  • Anouk Twilt (2022) Sustainability in action: exploring automatically extracting actions from news-articles (full thesis)
  • Lois Rink (2022) Automatic Classification of Speech Acts in tax service letters (full thesis ♦ internship at Belastingdienst)
  • Giorgio Malinverni (2022) Analysing the Influence of Morphological Characteristics on the Performance of Few-Shot Prompting for Natural Language Inference in Cross-Lingual Settings (full thesis )
  • Eva den Uijl (2021) Detecting Discriminatory Language in Job Advertising Texts (full thesis ♦ internship at TextMetrics)
  • Melisha Lemain – van der Nest (2021) Named Entity Recognition: identifying NER Indicators in Dutch Police Reports (full thesis ♦ internship at CBS). 
  • Dyon van der Ende (2021) Text Mining for Sustainability: Detecting Corporate Greenwashing with the Sustainable Development Goals (full thesis)
  • Gabriele Catanese (2021) A Transfer Learning approach to Aspect Based Sentiment Analysis for airline customer feedbacks (full thesis ♦ internship at Underlined                         !! nominated for the Faculty of Humanities thesis prize 2021
  • Stan Frinking (2021) Using Text Mining Techniques to Detect Fall Events in Medical Patient Notes (full thesis ♦ internship at VU Medical center)
  • Jasmine van Vugt  (2021) Two Dutch fine-tuned BERT models: Named Entity Recognition and Named Entity Linking to increase findability of local geographical information. (full thesis ♦ internship at  CBS)
  • Sanne Hamersma (2021) Explorative analysis of precursors of physical aggression in a health care institute: a Text Mining approach (full thesis ♦ internship at : GGZ
  • Aju Shreshta (2021)  BERTje-based Automatic Anonymisation of Dutch Police Reports (full thesis ♦ internship at : CBS
  • Breta Micha (2021)  Automatic Terminology Extraction in domain specific texts: a comparison between a rule-based system and a BERT-based system. (full thesis)
  • Jan van Casteren (2020) Automatic Attribution Extraction From Dutch News Articles: A Beginning (full thesis  ♦ thesis github research at: eScience center – inside the filter bubble)
  • Peter Caine (2020). Mind the gap: A comparison of linguistic vs deep-learning approaches to aspect extraction and aspect category detection  (full thesis ♦ thesis github)
  • Luca Meima (2020) Finding potentially HIV defining conditions in medical reports  (full thesis ♦ thesis github ♦ internship at https://mytomorrows.com/)
  • Eva Zegelaar (2020) An Automatic Emotion & Purpose Classifier for Dutch Tweets Written by Members of the Dutch Parliament (full thesis  ♦ thesis github ♦ internship at: https://reddata.nl/)